
CIS 6930/4930 Computer and Network
Security

Final exam review

About the Test

• This is an open book and open note exam.

– You are allowed to read your textbook and notes
during the exam;

– You may bring your laptop to the exam but you
are not allowed to access to internet during the
exam.

– Before midterm 30%, after midterm 70%

24/12/2017

Introduction to Cryptography

• Basic Security Concepts
– Confidentiality, integrity, availability

• Introduction to Cryptography

– Secret key cryptography

• Sender and receiver share the same key

• Applications
– Communication over insecure channel, Secure storage,

Authentication, Integrity check

34/12/2017

Introduction to Cryptography

• Introduction to Cryptography

– Public key cryptography

• Public key: publicly known

• Private key: kept secret by owner

• Encryption/decryption mode
– How the keys are used?

• Digital signature mode
– How the keys are used?

• Application: Secure communication, secure storage,
authentication, digital signature, key exchange

44/12/2017

Introduction to Cryptography

• Introduction to Cryptography

– Hash function

• Map a message of arbitrary length to a fixed-length
short message

– Desirable properties

• Performance, one-way, weak collision free, strong
collision free

54/12/2017

DES

• DES

– Parameters

• Block size (input/output 64 bits)

• key size (56 bits)

• number of rounds (16 rounds)

• subkey generalization algorithm

• round function

64/12/2017

DES Round: f (Mangler) Function

7

Li Ri

Input block i

f Ki



Li+1 Ri+1

Output block i+1

Expansion

S-Box
(substitution)

Permutation

K

i

function f = “Mangler”

32-bit half block

48

bits

32-bit half block

Modes of Block Cipher Operations

• ECB (Electronic Code Book)

• CBC (Cipher Block Chaining Mode)

• OFB (Output Feedback Mode)

• CFB (Cipher Feedback Mode)

84/12/2017

Modes of Block Cipher Operations

• Properties of Each Mode

– Chaining dependencies

– Error propagation

– Error recovery

94/12/2017

Double DES and Triple DES

• You need to understand how double and triple
DES works

– Double DES C=Ek2(Ek1(P))

– Triple DES C = Ek1(Dk2(Ek1(P))

– Meet-in-the-middle attacks

– Operation modes using Triple DES

104/12/2017

The Meet-in-the-Middle Attack

1. Choose a plaintext P and generate ciphertext C,
using double-DES with K1+K2

2. Then…

a. encrypt P using single-DES for all possible 256 values K1 to
generate all possible single-DES ciphertexts for P:
X1,X2,…,X2

56 ;
store these in a table indexed by ciphertex values

b. decrypt C using single-DES for all possible 256 values K2 to
generate all possible single-DES plaintexts for C:
Y1,Y2,…,Y2

56 ;
for each value, check the table

11

Steps … (Cont’d)
3. Meet-in-the-middle:

– Each match (Xi = Yj) reveals a candidate key pair Ki+Kj

– There are 2112 pairs but there are only 264 X’s

4. On average, how many pairs have identical X and Y?

— For any pair (X, Y), the probability that X = Y is 1/ 264

— There are 2112 pairs.

— The average number of pairs that result in identical X and
Y is 2112 / 264 = 248

12

Steps … (Cont’d)
5. The attacker uses a second pair of plaintext and

ciphertext to try the 248 Key pairs

– There are 248 pairs and there are 264 X’s (Y’s)

— The average number of pairs that result in identical X and Y is
248 / 264 = 2-16

— The expected number of survived candidate key pairs is less
than 1. After examine two pairs of plaintext and ciphtertext,
the attacker identifies the key

13

Number Theory Summary
• Fermat: If p is prime and a is positive integer not divisible by p, then

ap-1  1 (mod p)

14

Example: 11 is prime, 3 not divisible by 11, so 311-1 = 59049  1 (mod 11)

Euler: For every a and n that are relatively prime, then aø(n)  1 mod n

Example: For a = 3, n = 10, which relatively prime: (10) = 4, 3 (10) = 34 = 81  1 mod 10

Generalized Euler’s Theorem: for n = pq (p and q are distinct primes), all a in Zn ,

and all non-negative k, a k(n)+1  a mod n

Example: for n = 20, a = 7, (n) = 8, and k = 3: 7 3*8+1  7 mod 20

Example: for n = 15, a = 6, (n) = 8, and k = 3: 6 3*8+1  6 mod 15

Variant: for all a in Zn*, and all non-negative k, a k(n)+1  a mod n

Example: x = 5, y = 7, n = 6, (6) = 2, 57 mod 6 = 57 mod 2 mod 6 = 5 mod 6

xy mod n = xy mod (n) mod n (foundation for RSA public key cryptographic)

Public Key Cryptography

• RSA Algorithm

– Basis: factorization of large numbers is hard

– Variable key length (1024 bits or greater)

– Variable plaintext block size

• plaintext block size must be smaller than key size

• ciphertext block size is same as key size

154/12/2017

Generating a Public/Private Key Pair

• Find large primes p and q

• Let n = p*q

• do not disclose p and q!

• (n) = (p-1)*(q-1)

• Choose an e that is relatively prime to (n)

• public key = <e,n>

• Find d = multiplicative inverse of e mod (n) (i.e.,
e*d = 1 mod (n))

• private key = <d,n>

16

RSA Operations

• For plaintext message m and ciphertext c

17

Signing: s = md mod n, m < n

Verification: m = se mod n

Encryption: c = me mod n, m < n

Decryption: m = cd mod n

Diffie-Hellman Protocol

• For negotiating a shared secret key using only
public communication

• Does not provide authentication of
communicating parties

• What’s involved?

– p is a large prime number (about 512 bits)

– g is a primitive root of p, and g < p

– p and g are publicly known

18

D-H Key Exchange Protocol

19

Alice Bob

Publishes g and p Reads g and p

Picks random number SA

(and keeps private)

Picks random number SB

(and keeps private)

Computes TA = gSA mod p Computes TB = gSB mod p

Sends TA to Bob, Sends TB to Alice,

Computes TB
SA mod p Computes TA

SB mod p=

Key Exchange (Cont’d)

20

Alice and Bob have now both computed the same secret gSASB

mod p, which can then be used as the shared secret key K

SA is the discrete logarithm of gSA mod p and

SB is the discrete logarithm of gSB mod p

=

Why is This Secure?

• Discrete log problem is hard:

– given ax mod b, a, and b, it is computationally
infeasible to compute x

21

D-H Limitations
• Expensive exponential operation is required

– possible timing attacks??

• Algorithm is useful for key negotiation only

– i.e., not for public key encryption/verification

• Not for user authentication

– In fact, you can negotiate a key with a complete
stranger!

22

Man-In-The-Middle Attack
• Trudy impersonates as Alice to Bob, and also

impersonates as Bob to Alice

23

Alice BobTrudy

K1 = (gSA) S”B” K2 = (gSB) S”A”

Authenticating D-H Messages
• That is, you know who you’re negotiating

with, and that the messages haven’t been
modified

• Requires that communicating parties already
share something

• Then use shared information to enable
authentication

24

Using D-H in “Phone Book” Mode

1. Alice and Bob each chooses a secret number,
generate TA and TB

2. Alice and Bob publish TA, TB, i.e., Alice can get Bob’s
TB at any time, Bob can get Alice’s TA at any time

3. Alice and Bob can then generate a shared key
without communicating

– but, they must be using the same p and g

• Essential requirement: reliability of the published
values (no one can substitute false values)

25

Digital Signature Standard (DSS)

• Useful only for digital signing (no encryption
or key exchange)

• Components
– SHA-1 to generate a hash value (some other hash

functions also allowed now)

– Digital Signature Algorithm (DSA) to generate the
digital signature from this hash value

• Designed to be fast for the signer rather than
verifier

26

Digital Signature Algorithm (DSA)

1. Announce public parameters used for signing
– pick p (a prime with >= 1024 bits)

– pick q (a 160 bit prime) such that q|(p1)

– choose g  h(p1)/q mod p, where 1 < h < (p – 1),
such that g > 1

– note: g is of order q mod p

27

ex.: if h = 2, g = 26 mod 103 = 64

ex.: p = 103

ex.: q = 17 (divides 102)

ex.: powers of 64 mod 103 =

64 79 9 61 93 81 34 13 8 100 14 72 76 23 30 66 1

17 values

DSA (Cont’d)

2. User Alice generates a long-term private key x
– random integer with 0 < x < q

3. Alice generates a long-term public key y
– y = gx mod p

28

ex.: x= 13

ex.: y = 6413 mod 103 = 76

DSA (Cont’d)

4. Alice randomly picks a per message secret
number k such that 0 < k < q, and generates
k-1 mod q

5. Signing message M

– r = (gk mod p) mod q

– s = [k1*(H(M)+x*r)] mod q

– transmitted info = M, r, s

29

ex.: k = 12, 12-1 mod 17 = 10

ex.: r = (6412 mod 103) mod 17 = 4

ex.: s = [10 * (75 + 13*4)] mod 17 = 12

ex.: H(M) = 75

ex.: M, 4, 12

Verifying a DSA Signature

• Known : g, p, q, y

• Received from signer: M, r, s

1. w = (s)1 mod q

2. u1 = [H(M) *w] mod q

3. u2 = (r*w) mod q

4. v = [(gu1*yu2) mod p] mod q

5. If v = r, then the signature is verified

30

ex.: M, 4, 12

ex.: w = 12-1 mod 17 = 10

ex.: u1 = 75*10 mod 17 = 2

ex.: u2 = 4*10 mod 17 = 6

ex.: v = [(642 * 766) mod 103] mod 17 = 4

ex.: p = 103, q = 17, g = 64, y = 76, H(M) = 75

Authentication

• Authentication is the process of reliably
verifying certain information.

• Examples
– User authentication

• Allow a user to prove his/her identity to another entity
(e.g., a system, a device).

– Message authentication
• Verify that a message has not been altered without

proper authorization.

31

Password-Based User Authentication

• User demonstrates knowledge of a secret
value to authenticate

– most common method of user authentication

32

challenge

response

Password Storage

• Storing unencrypted passwords in a file is high risk

– compromising the file system compromises all the stored
passwords

• Better idea: use the password to compute a one-
way function (e.g., a hash, an encryption), and store
the output of the one-way function

• When a user inputs the requested password…

1. compute its one-way function

2. compare with the stored value

33

Common Password Choices

• Pet names

• Common names

• Common words

• Dates

• Variations of above (backwards, append a few
digits, etc.)

34

Dictionary Attacks (Cont’d)
• Attack 3 (offline):

– To speed up search, pre-compute F(dictionary)

– A simple look up gives the password

35

Eagle

Wine

Rose

…

Dictionary

TdWx%

XkPT

KYEN

…

Password file

XkPT

%$DVC

#AED!

…

Pre-computed

Dictionary

F Look up

Password Salt

• To make the dictionary attack a bit more difficult

• Salt is a n-bit number between 0 and 2n

• Derived from, for example, the system clock and the
process identifier

36

37

S/Key Password Generation
1. Alice selects a password x

2. Alice specifies n, the number of passwords
to generate

3. Alice’s computer then generates a sequence
of passwords

– x1 = H(x)

– x2 = H(x1)

– …

– xn = H(xn-1)

x (Password)

x1

H H H H

x2 x3 x4

x

Authentication Handshakes

• Secure communication almost always includes
an initial authentication handshake.

– Authenticate each other

– Establish session keys

– This process is not trivial; flaws in this process
undermine secure communication

38

Mutual Authentication

39

Alice Bob

I’m Alice

R1

f(KAlice-Bob, R1)

R2

f(KAlice-Bob, R2)

Alice Bob

I’m Alice, R2

R1, f(KAlice-Bob, R2)

f(KAlice-Bob, R1)

Optimize

Mutual Authentication (Cont’d)
• Reflection attack

40

Trudy Bob

I’m Alice, R2

R1, f(KAlice-Bob, R2)

f(KAlice-Bob, R1)

Trudy Bob

I’m Alice, R1

R3, f(KAlice-Bob, R1)

Mutual Authentication (Cont’d)

41

Alice Bob

I’m Alice, R2

R1, f(KAlice-Bob, R2)

f(KAlice-Bob, R1)

Alice Bob

I’m Alice

R1

f(KAlice-Bob, R1), R2

f(KAlice-Bob, R2)

Countermeasure

42

Trusted Key Servers

• How do a large number of users authenticate
each other?

– inefficient / impractical for every pair of users to
negotiate a secret key or share passwords

• Alternative: everybody shares a key with (and
authenticates to) a single trusted third party

• Assumes there is a way to negotiate a key with
the third party

43

Trusted… (cont’d)

• Shared keys between the Key Distribution
Center (KDC) and users

KDC
A

B

C D

E
KA-KDC

KB-KDC

KC-KDC
KD-KDC

KE-KDC

44

Hierarchy… (cont’d)

KDC-1
A

B

C

KA-K1

KB-K1

KC-K1

Domain 1
D

E

KD-K2

KE-K2

KDC-2

Domain 2

Needham-Schroeder Protocol
• Classic protocol for authentication with KDC

– Many others have been modeled after it (e.g., Kerberos)

45

Alice BobKDC

Generate KAB
N1, Alice wants to talk to Bob

ticket to Bob, KAB{N2}

KAlice{N1, “Bob”, KAB, ticket to Bob},

where ticket to Bob = KBob{KAB, Alice}

KAB{N21, N3}

KAB{N31}

How is Bob authenticated? How is Alice authenticated? How is KDC

authenticated? What are the N’s used for? Why is N-1 needed?

Needham-Schroeder Protocol (Cont’d)
• A vulnerability

– When Trudy gets a previous key KAB used by Alice,
Trudy may reuse a previous ticket issued to Bob
for Alice

– Essential reason

• The ticket to Bob stays valid even if Alice changes her
key

46

Expanded Needham-Schroeder Protocol

47

Alice BobKDC

Generate KAB; extract NB
N1, Alice wants to talk to Bob, KBob{NB}

ticket to Bob, KAB{N2}

KAlice{N1, “Bob”, KAB, ticket to Bob},

where ticket to Bob = KBob{KAB, Alice, NB}

KAB{N21, N3}

KAB{N31}

I want to talk to you

KBob{NB}

Otway-Rees Protocol

• Only has five messages
• KDC checks if NC matches in both cipher-texts

– Make sure that Bob is really Bob

48

Alice Bob

KDC

Generate KAB

Extract NB

NC, “Alice”, “Bob”, KAlice{NA, NC, “Alice”, “Bob”}

NC, KAlice{NA, KAB}, KBob{NB, KAB}

KAlice{NA, NC, “Alice”, “Bob”},

KBob{NB, NC, “Alice”, “Bob”}

KAlice{NA, KAB}

KAB{anything recognizable}

Trusted Intermediaries

• Problem: authentication for large networks

• Solution #1

– Key Distribution Center (KDC)

• Representative solution: Kerberos

– Based on secret key cryptography

• Solution #2

– Public Key Infrastructure (PKI)

– Based on public key cryptography

49

Goals of Kerberos
1. User  server mutual authentication

2. Users should only need to authenticate once
to obtain services from multiple servers

3. Should scale to large numbers of users and
servers

– makes use of a Key Distribution Center so
servers don’t need to store information about
users

50

Some Properties

• Kerberos uses only secret key (symmetric)
encryption

– originally, only DES, but now 3DES and AES as well

• A stateless protocol

– KDCs do not need to remember what messages
have previously been generated or exchanged

– the state of the protocol negotiation is contained
in the message contents

51

Protocol Sketch (Common Case)

52

Alice

Alice’s

Workstation

KDC

Server

V

#1 Login +

Password

#4 Request

service from V

#2 Alice wants to authenticate

#3 Here’s Alice’s TGT

#5 Alice wants service from V

#6 Here is key + ticket to use

#7 Here is Alice’s ticket for

service + key to use

#8 Alice’s request for service is

granted, using key supplied

Some Differences with v4
1. v5 uses ASN.1 syntax to represent messages

– a standardized syntax, not particularly easy to
read

– but, very flexible (optional fields, variable field
lengths, extensible value sets, …)

2. v5 extends the set of encryption algorithms

3. v5 supports much longer ticket lifetimes

4. v5 allows “Pre-authentication” to thwart
password attacks

5. v5 allows delegation of user access / rights

53

Delegation

• Giving someone else the right to access your
services

• Some not-so-good ways to implement

– give someone else your password / key

– give someone else your tickets (TKTV’s)

• Kerberos v5 provides 3 better choices

54

Pre-Authentication

• Reminder: Msg #3 is encrypted by the KDC with
KA-KDC
– An adversary may send many authentication

requests to cause the Denial-of-Service.

• Solution: before Msg #3, require Alice to send
pre-authentication data to the KDC
– i.e., a timestamp encrypted with the shared master

key

– this proves Alice knows the key

55

#3. KDCW: KA-KDC(IDA | TS1 | Lifetime1 | KA-KDC | IDKDC | TGT)

Pre-Authentication (Cont’d)

• Msg#6 provides an opportunity for Alice to
mount a password-guessing attack against the
server key KV-KDC
– solution: servers are not allowed to generate keys

based on (weak) passwords

56

KV-KDC(IDA | AddrA| KA-V | Lifetime5 | TS5 | IDV)

What Is PKI

• Informally, the infrastructure supporting the
use of public key cryptography.

• A PKI consists of
– Certificate Authority (CA)

– Certificates

– A repository for retrieving certificates

– A method of revoking/updating certificates

57

Certification Authorities (CA)
• A CA is a trusted node that maintains the public keys

for all nodes (Each node maintains its own private
key)

58

1

2

3

4

5

6

CA

If a new node is inserted in the network, only that new node and

the CA need to be configured with the public key for that node

Certificates
• A CA is involved in authenticating users’ public keys

by generating certificates

• A certificate is a signed message vouching that a
particular name goes with a particular public key

• Example:
1. [Alice’s public key is 876234]carol

2. [Carol’s public key is 676554]Ted & [Alice’s public key is
876234]carol

• Knowing the CA’s public key, users can verify the
certificate and authenticate Alice’s public key

59

Certificates

• Certificates can hold expiration date and time

• Alice keeps the same certificate as long as she
has the same public key and the certificate
does not expire

• Alice can append the certificate to her
messages so that others know for sure her
public key

60

CA Advantages

1. The CA does not need to be online. [Why?]

2. If a CA crashes, then nodes that already have their
certificates can still operate.

3. Certificates are not security sensitive (in terms of
confidentiality).

▪ Can a compromised CA decrypt a conversation between two parties?

▪ Can a compromised CA fool Alice into accepting an incorrect public key
for Bob, and then impersonate Bob to Alice?

61

PKI Models

1. Monopoly model

2. Monopoly + RA

3. Delegated CAs

4. Oligarchy model

5. Anarchy model

6. Name constraints

7. Top-down with name constraints

8. Bottom-up with name constraints

62

Certificate Revocation

• Certificates for public keys (Campus IDs) might
need to be revoked from the system

– Someone is fired

– Someone is graduated

– Someone’s certificate (card) is stolen

63

Certificate Revocation

• Certificates typically have an associated expiration
time
– Typically in the order of months (too long to wait if it

needs to be revoked)

• Solutions:
– Maintain a Certificate Revocation List (CRL)

– A CRL is issued periodically by the CA and contains all the
revoked certificates

– Each transaction is checked against the CRL

64

CRLs

1. Why are CRLs issued periodically even if no
certificates are revoked?

2. How frequent should CRLs be issued?

3. If a CRL is maintained, why associate an
expiration time with certificates?

65

Delta CRL

• A Delta CRL includes lists changes from the last
complete CRL

• Delta CRLs may be issued periodically (frequently) and
full CRLs are issued less frequently

66

Good-lists vs. Bad-lists
• How about maintaining a list of valid certificates in the CRL

instead of the revoked certificates?

• Is this more secure? Why?

• Problems:
1. A good list is likely to be much larger than the bad list (worse

performance)

2. Organizations might not want to maintain its list of valid certificates
public.

Solution: The good-list can maintain only hashes of the valid certificates

67

IPsec Objectives (Cont’d)

• IP layer security mechanism for IPv4 and IPv6

– Not all applications need to be security aware

– Can be transparent to users

– Provide authentication and confidentiality
mechanisms.

68

IPsec Architecture

69

IPsec module 1 IPsec module 2

SPD

IKE

SAD IPsec

SPD

IKE

SADIPsec
SA

SPD: Security Policy Database; IKE: Internet Key Exchange;

SA: Security Association; SAD: Security Association Database.

IPsec Architecture (Cont’d)

• Two Protocols (Mechanisms)

– Authentication Header (AH)

– Encapsulating Security Payload (ESP)

• IKE Protocol

– Internet Key Management

70

Tunnel Mode

71

A B

Encrypted Tunnel

Gateway Gateway

New IP

Header

AH or ESP

Header

TCP DataOrig IP

Header

Encrypted

Tunnel Mode (Cont’d)

• ESP applies only to the tunneled packet

• AH can be applied to portions of the outer header

72

Outer IP

header

Inner IP

header

IPsec

header

Higher

layer protocol

ESP

AH

Real IP destinationDestination

IPsec

entity

Transport Mode

73

A B

New IP

Header

AH or ESP

Header

TCP Data

Encrypted/Authenticated

Transport Mode (Cont’d)

• ESP protects higher layer payload only
• AH can protect IP headers as well as higher layer

payload

74

IP

header

IP

options

IPsec

header

Higher

layer protocol

ESP

AH

Real IP

destination

Security Association (SA)

• An association between a sender and a
receiver

– Consists of a set of security related parameters

– E.g., sequence number, encryption key

• Determine IPsec processing for senders

• Determine IPsec decoding for destination

• SAs are not fixed! Generated and customized
per traffic flows

75

Security Parameters Index (SPI)

• A bit string assigned to an SA.

• Carried in AH and ESP headers to enable the
receiving system to select the SA under which
the packet will be processed.

• 32 bits

• SPI + Dest IP address + IPsec Protocol

– Uniquely identifies each SA in SA Database (SAD)

76

Security Policy Database (SPD)

• Policy entries define which SA or SA Bundles
to use on IP traffic

• Each host or gateway has their own SPD

• Index into SPD by Selector fields
– Selectors: IP and upper-layer protocol field values.

– Examples: Dest IP, Source IP, Transport Protocol,
IPSec Protocol, Source & Dest Ports, …

77

Outbound Processing

78

Is it for IPsec?

If so, which policy

entry to select?

…

SPD

(Policy)

…

SA

Database

IP Packet

Outbound packet (on A)

A B

SPI & IPsec

Packet

Send to B

Determine the SA

and its SPI

IPSec processing

Inbound Processing

79

Use SPI to

index the SAD

…

SA Database

Original IP Packet

SPI & Packet

Inbound packet (on B)

A B

From A

…

SPD

(Policy)

Was packet properly

secured?

“un-process”

Authentication Header (AH)

• Data integrity

– Entire packet has not been tampered with

• Authentication

– Can “trust” IP address source

– Use MAC to authenticate

• Anti-replay feature

• Integrity check value

80

IPsec Authentication Header

81

…

SAD

SPI

Sequence Number

ICV

Next Header

(TCP/UDP)

Payload Length

6-2=4
Reserved

Encapsulated Security Protocol (ESP)

• Confidentiality for upper layer protocol

• Partial traffic flow confidentiality (Tunnel
mode only)

• Data origin authentication

82

83

ES
P

 T
ra

n
sp

o
rt

 E
xa

m
p

le

SPI

Sequence Number

Original IP Header

Integrity Check Value

A
u

th
e
n

ti
c
a
ti

o
n

 c
o

v
e
ra

g
e

E
n

c
ry

p
te

d

Payload (TCP Header and Data)

Variable Length

Pad

Length

Padding (0-255 bytes)

Next

Header

84

Key Management

• Why do we need Internet key management

– AH and ESP require encryption and authentication
keys

• Process to negotiate and establish IPsec SAs
between two entities

85

Security Principles (Cont’d)

• Perfect forward secrecy (PFS)

– Compromise of current keys (session key or long-
term key) doesn’t compromise past session keys.

– Concern for encryption keys but not for
authentication keys.

Examples of Non Perfect Forward
Secrecy

• Alice sends all messages with Bob’s public key,
Bob sends all messages with Alice’s public key

• Kerberos

• Alice chooses session keys, and sends them to
Bob, all encrypted with Bob’s public key

86

87

Automatic Key Management

• Key establishment and management
combined
– SKIP

• Key establishment protocol
– Oakley

• focus on key exchange

• Key management
– Internet Security Association & Key Management

Protocol (ISAKMP)
• Focus on SA and key management

• Clearly separated from key exchange.

88

SKIP (Cont’d)

Certificate

repository

Alice Bob

Bob’s certificate Alice’s certificate

Payload encrypted with Kp.Kp encrypted with KEK.

Two types of keys:

1. KEK

2. Packet key

89

SKIP (Cont’d)

• Limitations

– No Perfect Forward Secrecy

– No concept of SA; difficult to work with the
current IPsec architecture

• Not the standard, but remains as an
alternative.

90

Oakley

• Oakley is a refinement of the basic Diffie-
Hellman key exchange protocol.

• Why need refinement?

– Resource clogging attack

– Replay attack

– Man-in-the-middle attack

– Choice of D-H groups

91

Short-term public key

Short-term public key

Ephemeral Diffie-Hellman

• Session key is computed on the basis of short-term
DH public keys.

• Exchange of these short-term public keys requires
authentication and integrity.
– Digital signatures.

– Keyed message digests.

• Perfect forward secrecy?

92

Ephemeral Diffie-Hellman

• Question: What happens if the long term key
is compromised?

93

ISAKMP
• Oakley

– Key exchange protocol

– Developed to use with ISAKMP

• ISAKMP

– Internet security association and key management
protocol

– Defines procedures and packet formats to
establish, negotiate, modify, and delete security
associations.

– Defines payloads for security association, key
exchange, etc.

94

IKE Overview (Cont’d)

• Request-response protocol
– Initiator

– Responder

• Two phases
– Phase 1: Establish an IKE (ISAKMP) SA

– Phase 2: Use the IKE SA to establish IPsec SAs

95

IKE Overview (Cont’d)

• Several Modes
– Phase 1:

• Main mode: identity protection

• Aggressive mode

– Phase 2:
• Quick mode

– Other modes
• New group mode

– Establish a new group to use in future negotiations

– Not in phase 1 or 2;

– Must only be used after phase 1

• Informational exchanges

96

IKE Phase 1

• Negotiating cryptographic parameters

– Specifies suites of acceptable algorithms:
• {(3DES, MD5, RSA public key encryption, DH),

• (AES, SHA-1, pre-shared key, elliptic curve), …}

– Specifies a MUST be implemented set of algorithms:
• Encryption=DES, hash=MD5/SHA-1, authentication=pre-shared

key/DH

– The lifetime of the SA can also be negotiated

97

IKE Phase 1

• Four authentication methods

– Authentication with public signature key

– Authentication with public key encryption

– Authentication with public key encryption, revised

– Authentication with a pre-shared key

98

IKE Phase 2 -- Quick Mode

• Negotiates parameters for the phase-2 SA

• Information exchanged with quick mode must
be protected by the phase-1 SA

• Essentially a SA negotiation and an exchange
of nonces

• Used to derive keying materials for IPsec SAs

99

IKE Phase 2 -- Quick Mode
(Cont’d)

• 3-messages protocol

X, Y, CP, traffic, SPIA , nonceA , ga mod p

X, Y, CPA, traffic, SPIB , nonceB , gbmod p

X, Y, ack

